Rings defined by $\mathcal{R}$-sets and a characterization of a class of semiperfect rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalizations of semiperfect and perfect rings

‎We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel‎, ‎that is‎, ‎every simple right $R$-module has a flat $B$-cover‎. ‎We give some properties of such rings along with examples‎. ‎We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...

متن کامل

A class of J-quasipolar rings

In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...

متن کامل

Semiperfect coalgebras over rings

Our investigation of coalgebras over commutative rings R is based on the close relationship between comodules over a coalgebra C and modules over the dual algebra C∗. If C is projective as an R-module the category of right C-comodules can be identified with the category σ[C∗C] of left C∗-modules which are subgenerated by C. In this context semiperfect coalgebras are described by results from mo...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

Characterizations of Semiperfect and Perfect Rings(∗)

We characterize semiperfect modules, semiperfect rings, and perfect rings using locally projective covers and generalized locally projective covers, where locally projective modules were introduced by Zimmermann-Huisgen and generalized locally projective coves are adapted from Azumaya’s generalized projective covers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1971

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1971-0272825-3